Electric Potential Worksheet

1. The potential at a distance of 25 cm from a point charge is $-6.4 \times 10^{4} \mathrm{~V}$. What is the value of the point charge? $\left(-1.8 \times 10^{-6} \mathrm{C}\right)$
2. Calculate the electric potential 0.50 m away from a $4.5 \times 10^{-4} \mathrm{C}$ point charge. $\left(8.1 \times 10^{6} \mathrm{~V}\right)$
3. How much energy is acquired by an electron by moving through a potential difference of $2.5 \times 10^{4} \mathrm{~V}$? $\left(4.0 \times 10^{-15} \mathrm{~J}\right)$
4. Calculate the magnitude of the electric field in a parallel plate apparatus whose plates are 5.0 mm apart and have a potential difference of 300 V between them. ($6.0 \times 10^{4} \mathrm{~N} / \mathrm{C}$)
5. The potential difference between two large parallel plates is 450 V . If the plates are 2.0 cm apart what is the magnitude of the electric field between them? $\left(2.3 \times 10^{4} \mathrm{~N} / \mathrm{C}\right)$
6. The magnitude of the electric field between two parallel plates is $1.5 \times 10^{4} \mathrm{~N} / \mathrm{C}$. If the plates are 1.2 cm apart, what is the potential difference between the plates? (180 V)
7. An electron enters an electric field between two parallel plates $1.5 \times 10^{-4} \mathrm{~m}$ apart with a velocity of $3.0 \times 10^{5} \mathrm{~m} / \mathrm{s}$ to the left. Upon exiting the field, the electron has a new velocity of $2.5 \times 10^{6} \mathrm{~m} / \mathrm{s}$ to the left. Calculate the value of the potential difference between the two parallel plates. (17.5 V)
8. A proton is accelerated from rest through a potential difference of 250 V . Calculate the final speed of the proton. $\left(2.2 \times 10^{5} \mathrm{~m} / \mathrm{s}\right)$
